PRODUCTS 4—1

Novel Compression and Fueling Apparatus to Meet Hydrogen Vehicle Range Requirements

Merit Review and Peer Evaluation May 19, 2003 Berkeley, CA

Phase I Program Goals

Central Issue:

There is no cost-effective, proven method for fast filling (10 minutes or less) vehicles to 700 barg

Investigate:

Novel "Isothermal" Compressor

High pressure automatic valves

900 barg storage vessels for cascade

Flowmeter and other instruments

Dispensing equipment

Method

- Design, simulate, and test a novel compressor concept involving compression of hydrogen with a "liquid piston" with little temperature rise
 - ASPEN heat and material balance
 - ASPEN dynamics
 - Design spreadsheets for various system components
- Develop valves, instruments, storage systems, and dispensing components for 700 barg with industry partners

Technology Status

- Fast fill (<3 minutes) at 350 barg</p>
 - Issues
 - Tank heating
 - Communications
 - Flow control and measurement
 - Codes not in place yet
 - Storage costs
- Systems up to 75 nm3/hr available, but most systems are 1-20 nm3/hr
- Automobile ranges are under 200 miles
- Industry moving to 700 barg to address range issues

Timeline

System Pressure Analysis

- Intermediate pressures will not meet the automotive range requirements, so 700 barg fill will be the system design basis
- Automotive companies are beginning to request 700 barg systems
- Most components have higher pressure alternatives that are available commercially
- Cost increases, but cost per kg of delivered hydrogen decreases slightly
- 700 barg delivers 71% more hydrogen for a similar sized vehicle tank

Novel Compressor

- Targets:
 - Prototype flow rate ~ 1 nm3/hr (2 kg/day)
 - Output pressure 12000-14000 psig
 - Cost < \$15,000
 - Less than 5 Hp
- First pass
 - Water-based with pump and eductor set
 - Separation and surge volumes
 - Issues
 - Hydrogen solubility
 - High pressure water lubricity
- Further work Other fluids

High Pressure Automatic Valves

- Developed with a valve supplier
- Unique, balanced-piston design
- Actuated with process gas
- Packless
- Captured vent
- Rated to 15,000 psig
- Small size and footprint (3" dia x 3.5" height)
- Able to manifold multiple valves together
- Cost can be reduced with moderate volumes to around 50% of single item cost today

High Pressure Automatic Valves

15,000 PSI CAPTURED

900 Barg Storage

- Investigating many options
 - Cascade to 350 barg and use booster to direct compress into vehicle at 700 barg
 - Upgrade to existing stations
 - Composite cylinders
 - Not ASME-approved
 - High cost
 - Steel cylinders at 900 barg
 - Not mass produced
 - Custom designed

Instrumentation and Flowmeter

Flowmeter

- Testing 350 barg flowmeter types in another DOE program
- Work with successful vendors from the first program to increase the pressure capability to 900 barg

Instruments

- End connections must be robust and reliable
- High pressure hydrogen concerns
- Some devices are not currently available to 900 barg
- Work with vendors to utilize appropriate end connections and raise pressure capability

Dispensing Equipment

- Working with fueling vendor (OPW) and other industry partners to develop a standard for nozzle and breakaway
 - Existing nozzles and breakaways are not SAE J2600 compliant
 - SAE and ISO standards are not approved yet
 - Communications even more important at higher pressures
 - No existing true nozzle or breakaway available at 700 barg
 - High pressure hose quick-connects typically used for 700 barg systems today

Progress and Milestones

- May 15, 2003 Final Contract approved and in hand to allow material purchases
- June 1, 2003 Testing of compressor subassemblies, Construction of 700 barg fueling system
- August 1, 2003 Testing of custom compressor machined devices
- August 21, 2003 Go/No Go decision for Phase II

350 Barg Fueling System

Collaboration

- OPW/Shearex
- California Fuel Cell Partnership
- Major valve manufacturer
- Fluid manufacturer
- Pump manufacturer
- Custom machine shops
- A number of potential demonstration sites

tell me more www.airproducts.com